Molecular detection of trophic links in a complex insect host-parasitoid food web.

نویسندگان

  • Jan Hrcek
  • Scott E Miller
  • Donald L J Quicke
  • M Alex Smith
چکیده

Previously, host-parasitoid links have been unveiled almost exclusively by time-intensive rearing, while molecular methods were used only in simple agricultural host-parasitoid systems in the form of species-specific primers. Here, we present a general method for the molecular detection of these links applied to a complex caterpillar-parasitoid food web from tropical rainforest of Papua New Guinea. We DNA barcoded hosts, parasitoids and their tissue remnants and matched the sequences to our extensive library of local species. We were thus able to match 87% of host sequences and 36% of parasitoid sequences to species and infer subfamily or family in almost all cases. Our analysis affirmed 93 hitherto unknown trophic links between 37 host species from a wide range of Lepidoptera families and 46 parasitoid species from Hymenoptera and Diptera by identifying DNA sequences for both the host and the parasitoid involved in the interaction. Molecular detection proved especially useful in cases where distinguishing host species in caterpillar stage was difficult morphologically, or when the caterpillar died during rearing. We have even detected a case of extreme parasitoid specialization in a pair of Choreutis species that do not differ in caterpillar morphology and ecology. Using the molecular approach outlined here leads to better understanding of parasitoid host specificity, opens new possibilities for rapid surveys of food web structure and allows inference of species associations not already anticipated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diversity, population structure, and individual behaviour of parasitoids as seen using molecular markers.

Parasitoids have long been models for host-parasite interactions, and are important in biological control. Neutral molecular markers have become increasingly accessible tools, revealing previously unknown parasitoid diversity. Thus, insect communities are now seen as more speciose. They have also been found to be more complex, based on trophic links detected using bits of parasitoid DNA in host...

متن کامل

Trophic redundancy reduces vulnerability to extinction cascades

Current species extinction rates are at unprecedentedly high levels. While human activities can be the direct cause of some extinctions, it is becoming increasingly clear that species extinctions themselves can be the cause of further extinctions, since species affect each other through the network of ecological interactions among them. There is concern that the simplification of ecosystems, du...

متن کامل

Indirect Interactions in the High Arctic

Indirect interactions as mediated by higher and lower trophic levels have been advanced as key forces structuring herbivorous arthropod communities around the globe. Here, we present a first quantification of the interaction structure of a herbivore-centered food web from the High Arctic. Targeting the Lepidoptera of Northeast Greenland, we introduce generalized overlap indices as a novel tool ...

متن کامل

Stable Isotope Application in Animal Nutrition Science

The application of stable isotope analysis (SIA) has become a standard scientific approach in Agricultural and Ecological researches and, more in general, in several disciplines such as biology, botany, zoology, organic chemistry, climatology, and nutrition. The main objectives of this paper are (1) to provide a simple definition of stable isotopes and (2) to illustrate analytical measurement m...

متن کامل

Trophic assimilation efficiency markedly increases at higher trophic levels in four-level host-parasitoid food chain.

Trophic assimilation efficiency (conversion of resource biomass into consumer biomass) is thought to be a limiting factor for food chain length in natural communities. In host-parasitoid systems, which account for the majority of terrestrial consumer interactions, a high trophic assimilation efficiency may be expected at higher trophic levels because of the close match of resource composition o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular ecology resources

دوره 11 5  شماره 

صفحات  -

تاریخ انتشار 2011